

Power Generation Industry

Solutions to improve your plant performance

Engineering steam performance

Power Generation Industry

Delivering value to you

GESTRA has more than 100 years of experience as a steam solution provider.

We focus daily on the customer needs by providing a high level technical support and a comprehensive set of solutions and reliable products aimed to optimise your plant performance.

Our solutions are designed to maximise the profitability and competitiveness of your assets by delivering the following values:

> Flexibility

State of the art solutions that allow your plant to adapt to variable and fluctuating conditions

> Productivity

Extremely reliable solutions that will reduce downtime

> Energy saving

Engineered solutions that will help reduce Opex and CO_{2} footprint

> Maintenance reduction and ease of maintainability

Highly robust and reliable solutions can reduce your maintenance activities

COAL

GAS (Combined Cycle)

NUCLEAR

WASTE TO ENERGY

BIOMASS

More than 45 years experience in trouble shooting of severe service applications in the steam and water cycles.

We comply with ISO 9001, ISO 14001, OHSAS and we can provide products according to:

- > ASME
- > Pressure Equipment Directive PED
- > AD2000-HP0
- > ATEX IECEx Management Systems
- > Functional Safety Management System SIL
- > EAC
- > CRN
- > KTA1401
- > 100% production product testing on all products

How can we support you?

Providing solutions

Our expert sales engineers will support you throughout the entire process of improving your water, steam and condensate loop by selecting the best fit solution according to your needs and plant specifications.

Outstanding quality, reliability, ease of maintenance

State of the art technology products and solutions not only will enhance the plant performance but will also reduce downtime and relevant maintenance activities.

Engineered solutions and best in class products

Our products are engineered and manufactured in Germany. Close and effective relationships with universities and powergen associations grant a continuous development and improvement of our products. With an extensive and proven record of successful installations operated for years without failures we can deliver high value to our customers.

Delivering you value

Flexibility

- Fossil fuel power plants, designed for operating at base load, are now called to generate adapting to variable loads and considerable fluctuations.
- Power plants must be able to start up and shut down over short periods of time, run at minimum load and rapidly change generation output.
- Quicker start ups require minimum boiler depressurisation, efficient condensate drainage, reliable spraywater control valves.
- > Zero leakage tight shut-off control valves with specifically engineered trims able to handle extremely severe conditions and effective steam traps become a must.

Productivity

- > The increasing importance of renewables causes the electricity demand from conventional power plants to be quite **variable**.
- Fossil fuel power plants are more and more called to frequently start up and shut down, hence effective operational hours are decreasing and equipments are subject to more stressful conditions.
- Power plants must be as productive as possible when called in operation hence reducing downtime due to equipment failures becomes critical.
- > Zero leakage tight shut-off and wear resistant desuperheating spraywater control valves eliminate the risk of thermal shocks in the steam loop as well as allow a proper steam temperature control.

Energy saving

- The increased number of start ups requires a strict control of the losses in the steam-water loop.
- Minimizing high value steam losses such as flash steam to atmosphere not only will reduce water replenishment and relevant treatment costs but also will have a positive impact on CO₂ footprint enhancing plant efficiency.
- > Zero leakage tight shut-off drain valves and effective steam traps become a must.

Maintenance reduction and ease of maintainability

- Power plants flexibility and productivity are highly influenced by equipment reliability.
- High degree of reliability reduces maintenance costs and avoids unforeseen downtime.
- Robust and wear resistant valves require less maintenance and at the same time a quick change trim design reduces maintenance time.

Optimising your plant performance

6

Gestra[®]

	Application	Pressure [bar]	Temperature [°C]
А	Feedwater tank		
	1 Heating system valve	~50	~400
В	Main feedwater pump		
	2 Feedwater leak-off valve	up to 560	~220
	3 Feedwater control valve	up to 560	~220
С	High pressure pre-heater		
_	4 Condensate drain control valve	20-60	~300
D	Boiler plant		
	5 Boiler drain valve	up to 330	up to 620
	Soot-blower warm-up valve	~50	300-350
	Soot-blower steam valve	up to 330	550
	Boiler circulation control valve	180-330	~250
	6 Boiler vent valve	up to 330	up to 620
	7 Start-up pot drain valve	180-330	~450
	8 High pressure spray attemperator valve	~280	~220
	9 Intermediate pressure spray attemperator valve	~50	~220
E	Turbine plant		
	10.1 Live steam drainage	up to 330	up to 620
	10.2 Cold reheat line drainage	~50	~400
	10.3 High pressure turbine drainage	up to 330	up to 620
	10.4 Intermediate pressure turbine drainage	~60	up to 620
	10.5 Low pressure turbine drainage	<20	<400
F	High pressure bypass station		
	11 Spray injection valve	up to 350	~220
G	Intermediate pressure bypass station		
	12 Spray injection valve	up to 250	~220
Н	Condenser		
K	Condensate pump		
	13 Condensate leak-off valve	10-25	~30
	14 Condensate control valve	10-25	~30
L	Low pressure preheater		
	15 Condensate drain control valve	~0.4-5	~30

Severe service applications for water and steam

Spray water control (8,9,11,12)

These valves control the water flow required to keep the steam temperature of the superheater/reheater at the requested steam turbine set point. Water from the feedwater pump is mostly in the range from 50 to 280 bar. High pressure drop across the valve requires anti-cavitation trims. Accurate control performance is requested to keep the steam temperature set point. **Zero leakage tight shut-off** valves avoid thermal shock in the steam piping and turbine bypass stations.

Feedwater pump recirculation (2)

This is one of the toughest and most important application in a power plant: This valve operates mostly during the boiler start up to protect the feed pump against cavitation damages. Differential pressure can reach 500 bar hence a special anticavitation trim is requested.

A zero leakage tight shut-off valve avoids energy losses.

Boiler vent valves (6)

These valves operate mostly during the plant start up procedure but also have a safe function in case of boiler pressurization. They handle high steam flow rates hence must be **zero leakage tight shut-off** in order to avoid energy losses and reduce water replenishment.

Severe service applications for flashing water

Blow down, drain and warm up (4, 5, 7, 15)

These valves operate during the plant start up procedure. They handle flashing condensate coming from boiler, steam lines and the turbine. Specific trim design and special erosion proof materials are used to handle the 2-phase flow at high differential pressures (up to 220 bar). **Zero leakage tight shut-off** valves avoid energy losses, reduce water replenishment and allow quicker hot start ups. Effective steam traps contribute to energy saving drainage.

Controlled drainage with probes (10)

In nuclear power stations drain valves are continuously in operation since handling saturated/wet steam. In fossil fuel power stations cold reheat lines must be completely drained in order to avoid waterhammer and damages to reheaters. Level probes detect condensate and provide the signal to open and close the drain valves. They can also provide a fail safe function in order to grant the drainage. Specific trim design and special erosion proof materials are needed to handle the 2-phase flow during operation.

High pressure Intermediate pressure Low pressure

GESTRA solutions for severe service applications

ZK valves

ZK valves with radial multi-stage nozzle

- > Pressure rating up to PN 630/Cl2500
- > Max. differential pressure up to 560 bar
- > Materials 1.0460/A105 up to 1.4903/F91
- > Metal to metal zero leakage tight shut-off
- > Combined isolation and control valve
- > Quick change trim
- > Suitable for electric, pneumatic and hydraulic actuators
- > Adjustable Kvs (Cv) values and characteristics ensure high flexibility
- > Low noise

Steam traps

BK thermostatic steam traps

- > No steam losses
- > Energy efficient
- > High reliability

UNA float steam traps

Non-return valves

Wafer type RK and BB dual plate

- > Energy efficient
- > High reliability
- > Minimum pressure losses
- > Long service life

Level probes

NRG level probes

- > Up to PN 320
- > Max. temp. up to 550°C
- > Capacitive measurement system SIL 2 safety rating according IEC61508
- > Small HMI for easier setup and calibration
- > Plug and socket connection and preconfigured cable available for faster installation

GESTRA AG

Münchener Str. 77 • 28215 Bremen • GermanyTel. +49 421 3503-0info@de.gestra.comP.O. Box 10 54 60 • 28054 Bremen • GermanyFax +49 421 3503-393www.gestra.com850160-00/10-2019sxs_mw • ©2019 • GESTRA AG • Bremen • Subject to technical modifications

SB-GGE-04-EN-ISS1